DuPont[™] Kalrez[®] 6375UP

Optimal Seal Performance and Lower Cost of Ownership for Semiconductor Applications

Technical Information—Rev. 5, July 2010

To transform raw semiconducting materials into a useful device requires hundreds of chemical processing steps. A significant number of these steps involve aggressive acids, solvents, and bases (including amines) used to clean, rinse, etch or strip unwanted materials and contaminants from the wafer surface. These chemicals can attack elastomeric seals causing them to swell and degrade or to leach undesirable metallic and ionic extractables that affect integrated circuit functionality.

The trend toward larger wafers, smaller feature size, and decreasing thickness of deposited layers has placed increased emphasis on the need to minimize or eliminate sources of process contamination. Chemical and equipment manufacturers go to great lengths to minimize the potential for contamination that could result in chip defects.

DuPont has developed a number of products that resist chemical attack and are formulated and processed to minimize the potential for undesirable contaminants. The newest addition to our product line, **DuPont[™] Kalrez[®] 6375UP**, has an excellent balance of performance characteristics required for semicon wet processing environments.

Process Type	Typical Chemicals*	Temp. Range, °C	DuPont [™] Kalrez [®] 6375UP	DuPont [™] Kalrez [®] 4079UP	DuPont [™] Kalrez [®] 1050UP
Wafer Prep, Cleaning, and Rinsing	UPDI, Ozonated DI H ₂ 0 TCE, IPA, Acetone Piranha, SC-1, SC-2 HF (49%), O ₃	25–125	Suggested Compound	Suitable Alternate	Consult DuPont s
Wet Etching	HNO ₃ /HF/H ₂ 0 H ₃ PO ₄ /HNO ₃ /Acetic/H ₂ 0 H ₃ PO ₄ /HNO ₃ /HF/H ₂ 0,H ₃ PO ₄	25–180	Suggested Compound	Suitable Alternate	Consult DuPont
Photolithography Developing, Stripping, Rinsing	H₂SO₄ + Oxidant Organic Acids Chromic/Sulfuric Acid	25–125	Suggested Compound	Suitable Alternate	Consult DuPont
	NaOH, TMAH Xylene, Stoddard Solvent nMP	25–125	Suggested Compound	Suitable Alternate	Consult DuPont
	NMP/Alkanolamine DMSO/MEA DMAC/DEA Hydroxylamine	25–125	Suggested Compound	Consult DuPont	Suitable Alternate
Copper Plating	CuSO4 Solution H ₂ SO4, H ₂ O2 UPDI, Citric Acid	25–100	Suggested Compound	Suitable Alternate	Consult DuPont

* Refer to the DuPont Chemical Resistance Guide for specific chemical and product compatibility in semiconductor applications.

Note: Product ratings are based on a combination of chemical resistance and extractable performance. In applications where extractables are not a critical concern, multiple products may be appropriate. For further assistance, contact DuPont and ask to speak with a Kalrez[®] Applications Engineer.

DuPont[™] Kalrez[®] Offers Excellent Resistance to Chemical Attack

For many applications, low volume swell of elastomers is critical for proper equipment operation. Excessive swell may cause permanent seal failure due to equipment hang-up, extrusion, etc. While other physical property testing may be needed to adequately define product performance in a particular application, volume swell is an excellent indicator of resistance to chemical attack. The following data represents a summary of internal and external compatibility tests performed to determine the volume swell of products suggested for semiconductor wet process environments.

		Volume Swell			
Immersion Chemistry	Exposure Conditions	DuPont [™] Kalrez [®] 6375UP	DuPont [™] Kalrez [®] 4079UP	DuPont [™] Kalrez [®] 1050UP	
UPDI Water	85 °C, 30 days	0.7	2.3	5.5	
Piranha	25 °C, 30 days	0.1	0.1	0.1	
SC-1	25 °C, 30 days	0.6	1.1	0.6	
SC-2	25 °C, 30 days	0.1	0.1	0.2	
49% HF	25 °C, 30 days	2.8	0.6	1.8	
Ammonium Hydroxide	100 °C, 7 days	2.6	9.8	Not Tested	
Sulfuric Acid (H ₂ SO ₄)	120 °C, 30 days	1.3	0.8	2.8	
Nitric Acid (HNO ₃)	85 °C, 7 days	2.1	1.5	Not Tested	
Phosphoric/Acetic/Nitric Acid	60 °C, 28 days	1.0	1.0	Not Tested	
Hydrofluoric Acid/HNF ₄	60 °C, 28 days	0.0	1.0	Not Tested	
Hydrochloric, Nitric Acid and H ₂ O	60°C, 28 days	5.0	6.0	Not Tested	
n-Methylpyrrolidone	80 °C, 7 days	2.0	2.4	3.2	
Dimethyl Acetimide	80 °C, 7 days	2.4	4.0	4.4	
ACT 690C ^{™1}	95 °C, 10 days	1.5	7.9	2.0	
ACT-NP870 ^{TM1}	80 °C, 10 days	2.0	6.2	2.0	
ACT 935	80 °C, 10 days	1.6	5.1	1.8	
ACT NE-14	25 °C, 10 days	0.0	0.0	0.3	
	80 °C, 10 days	2.7	6.5	5.2	
EKC265 TM2	75 °C, 7 days	1.0	2.8	0.7	
EKC830 ^{™2}	75 °C, 7 days	3.1	10.0	10.1	
EKC4000 [™] PCT ²	75 °C, 7 days	0.7	1.7	2.5	
PRS-1000 ^{®3}	95 °C, 10 davs	1.5	7.9	2.0	
PRS-3000 ^{™3}	80 °C, 10 days	2.0	6.2	2.0	
ALEG [™] 310 ³	80 °C, 10 days	1.6	5.1	1.8	
REZI [™] 28 ³	80 °C, 10 days	2.7	6.5	5.2	

* Note: The volume swell values above should be used as an approximate indicator of relative compatibility performance. Generally <10% volume swell is desirable.

¹Ashland, Inc.

² EKC Technologies, Inc.

³ J.T. Baker (A Division of Mallincrkrodt Baker, Inc.)

Keep Contamination Under Control with Kalrez[®] Parts

Semiconductor devices are vulnerable to many types of contaminants including trace chemicals (anions and total organic carbons—TOCs), metallic ions, and particles.

Chemical Contamination (anions and TOCs)

Two of the major sources of contamination in semiconductor processes are trace elements of unwanted chemicals (anions) and organic contaminants (TOCs). Process chemicals and process water can become contaminated and interfere with wafer processing. Chlorine (i.e., chloride ion) is such a contaminant and is rigorously controlled in process chemicals. In UPDI systems, TOCs can adhere to wafer surfaces and adversely affect oxide quality or film quality.

Elastomeric seals can be a source of this contamination. DuPont has developed products to minimize the potential for chemical and organic contamination.

Chloride Ion Extractables After Immersion in UPDI Water for 1 Month at 85 °C*

Total Oxidizable Carbon After Immersion in UPDI Water for 1 Month at 85 °C*

*DuPont Extractables Test Procedure

Metallic Ion Contamination

Process chemicals can cause metallic ions to leach out of seal materials. These metallic ions, depending on type and quantity, can alter electrical properties and cause device failure to occur. Below is a summary of total metallic extractables after immersion of O-rings in various cleaning and wafer preparation process chemicals. DuPont[™] Kalrez[®] 6375UP has an excellent balance of chemical resistance and low metallic extractables in a variety of process fluids.

Total Metallic Extractables by ICP-MS*

* DuPont Extractables Test Procedure

Typical Physical Properties¹

Kalrez® Product	Color	Hardness Shore A (pellet) ²	Hardness Shore M (O-ring) ³	Max. Cont. Service Temp, ⁶ °C	100% Modulus⁴ MPa	Compression Set ⁵ at 70 hr 204°C, %
6375UP	Black	75	83	275	7.23	25
4079UP	Black	75	83	316	7.23	25
1050UP	Black	82	_	288	12.40	35

¹ Not to be used for specification purposes

² ASTM D2240 (pellet test specimens)

³ ASTM D2240 and ASTM D1414 (AS568A K214 O-ring test specimens)

⁴ ASTM D412 (dumbbell test specimens)

⁵ ASTM D395 (pellet test specimens)

⁶ DuPont proprietary test method

Visit us at kalrez.dupont.com or vespel.dupont.com

Contact DuPont at the following regional locations:

North America	Latin America	Europe, Middle East, Africa
800-222-8377	+0800 17 17 15	+41 22 717 51 11
Greater China	ASEAN	Japan
+86-400-8851-888	+65-6586-3688	+81-3-5521-8484

The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable and falls within the normal range of properties. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.

Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont customer service representative and read Medical Caution Statement H-50103-3.

Copyright © 2010 DuPont. The DuPont Oval Logo, DuPont[™], The miracles of science[™], Kalrez[®], UltraPure[™], and Vespel[®] are trademarks or registered trademarks of E.I. du Pont de Nemours and Company or its affiliates. All rights reserved.

(06/01) Reference No. KZE-H90137-00-F0710

